

### PHASE 2 NEW BUILDING

JOHN TYLER COMMUNITY COLLEGE

MIDLOTHIAN CAMPUS

Midlothian, VA

### Dennis Walter Jr.

Construction Management AE Senior Thesis Final Presentation, Spring 2010 The Pennsylvania State University



- Project Overview
- Introduction of Analyses
- Analysis I Brick Façade
- Analysis II Roofing System
- Analysis III Transformer
- Final Conclusions
- Questions & Answers



- Project Overview
- Introduction of Analyses
- Analysis I Brick Façade
- Analysis II Roofing System
- Analysis III Transformer
- Final Conclusions
- Questions & Answers

### **Client Information**

Virginia Community College Systems

John Tyler Community College Midlothian Campus

- Built in 2000
- Single Academic Building
- Fast expansion  $\rightarrow$  additional academic space
- Campus-wide green initiative



### **Project Location**



800 Charter Colony Parkway, Midlothian, VA ~16 miles to Richmond, VA

- Project Overview
- Introduction of Analyses
- Analysis I Brick Façade
- Analysis II Roofing System
- Analysis III Transformer
- Final Conclusions
- Questions & Answers

### **Project Overview**

Construction Manager:

• Gilbane

Architect: • Burt Hill Size: • 3 Stories • 60,000 SF

- Cost: • \$18.5 million Delivery Method:
- + CM @ Risk; GMP Contract w/ contingency
- Construction Schedule:
- May 2008 July 2009; 14 Months; Classes begin August 24, 2009

#### Building Features:

- 8 Laboratory Classrooms
- 10,000 SF College Library
- Green Roof
- LEED Certified





- Project Overview
- Introduction of Analyses
- Analysis I Brick Façade
- Analysis II Roofing System
- Analysis III Transformer
- Final Conclusions
- Questions & Answers

# **Introduction of Analysis**

#### <u>Analysis I – Brick Façade</u>

- Hand-Laid Brick Exterior Façade vs. Precast Architectural Panels
- Structural Calculations to check design of typical exterior bay

<u>Analysis II – Roofing System</u>

- Green Roof and IRMA system vs. "Cool" Roof system
- LEED and Heat Transfer comparison

<u>Analysis III – Transformer</u>

- Research into building transformers
- Electrical Calculations to size building transformer

- Project Overview
- Introduction of Analyses
- Analysis I Brick Façade
- Analysis II Roofing System
- Analysis III Transformer
- Final Conclusions
- Questions & Answers

### Analysis I – Brick Façade

Structural Breadth

Problem Statement:

- Hand-Laid Masonry  $\rightarrow$  time and space for construction
- Problems with through wall flashing and drip edge details & application of spray-on hot fluid applied vapor barrier.
- Alternative systems may eliminate problems and ease construction

#### Goal:

- Matching quality & performance
- Cost-effective
- Reduce site congestion and staging area







- Project Overview
- Introduction of Analyses
- Analysis I Brick Façade
- Analysis II Roofing System
- Analysis III Transformer
- Final Conclusions
- Questions & Answers

### **SlenderWall**

Architectural Precast Concrete & Steel Stud Panel Wall System:

- Exterior Surface Thin Architectural Brick Veneer
  - Veneer cast into 2 inches of reinforced precast concrete
- Inside Surface 16 gauge, 6 inch steel studs @ 2 ft on center
- Connected with shear studs

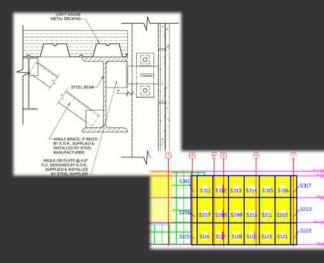
#### SlenderWall Panel Replaces:

- Brick Veneer
- Spray-on Hot Fluid Applied Vapor Barrier
- Exterior Sheathing
- Exterior Metal Studs



- Project Overview
- Introduction of Analyses
- Analysis I Brick Façade
- Analysis II Roofing System
- Analysis III Transformer
- Final Conclusions
- Questions & Answers




Panel Sizes:

- 122 Panels
- Most economical at 10' x 35' for shipping
- Not recommended over 13' x 40'

Connection to Structure:

- Welded anchor or plate to exterior spandrel beams of floor above
- Bolted connection as soon as panel is set by crane

| Panel Summary |     |          |               |                |  |  |
|---------------|-----|----------|---------------|----------------|--|--|
| Elevation     | QTY | Total SF | Unit Wt (PSF) | Panel Wt (lbs) |  |  |
| South         | 52  | 6052.8   | 30            | 181583         |  |  |
| East          | 17  | 2141.7   | 30            | 64250          |  |  |
| North         | 26  | 3972.50  | 30            | 119175         |  |  |
| West          | 27  | 4236.64  | 30            | 127099         |  |  |
| TOTAL         | 122 | 16404    | 30            | 492108         |  |  |

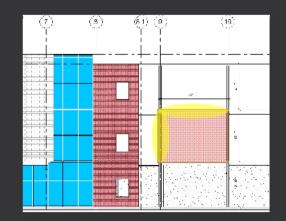


- Project Overview
- Introduction of Analyses
- Analysis I Brick Façade
- Analysis II Roofing System
- Analysis III Transformer
- Final Conclusions
- Questions & Answers

### **Structural Implications**

Check W 16x26 Beam for Moment:

- $\phi M_n = 234 \text{ ft*kips} > M_u = 59.5 \text{ ft*kips} \quad \sqrt{OK}$
- Check W 16x26 Beam for Deflection:


#### Construction Live Load:

 $\begin{array}{ll} \Delta_{\text{C-LL}} = 0.0827 \text{ inches} < L/360 = (21*12)/360 = 0.7 \text{ inches } \sqrt{\text{OK}} \\ \hline \underline{\text{Live Load:}} & \Delta_{\text{LL}} = 0.0647 \text{ inches} < 0.7 \text{ inches } \sqrt{\text{OK}} \\ \hline \underline{\text{Total Load:}} & \Delta_{\text{Total}} = 0.251 \text{ inches} < 0.7 \text{ inches } \sqrt{\text{OK}} \end{array}$ 

#### Check W 10x45 Column for Axial Load:

 $P_u = 174.9$  kips

W 10x45  $\rightarrow \phi_c P_n = 306 \text{ kips} > P_u = 174.9 \text{ kips} \sqrt{OK}$ 



- Project Overview
- Introduction of Analyses
- Analysis I Brick Façade
- Analysis II Roofing System
- Analysis III Transformer
- Final Conclusions
- Questions & Answers

### Schedule

- Hand-Laid Brick Building Enclosure Schedule:
- 79 days (start to finish)
- Constructed while elevated floor slabs being poured
- Site congestion and large prepping area required
- SlenderWall Building Enclosure Schedule:
- Fast erection time  $\rightarrow$  19 minutes per panel average
- 48 days (start to finish)
- Allows construction to begin after superstructure is complete
- Saves 16 total days in Building Enclosure Schedule
- Reduces site congestion
- Not on critical path  $\rightarrow$  allows room for unforeseen delays or issues

|          | Par | Panel Installation Times |                 |  |  |  |  |
|----------|-----|--------------------------|-----------------|--|--|--|--|
| Elevaton | QTY | Output/Panel (min)       | Duration (days) |  |  |  |  |
| South    | 52  | 19                       | 3.00            |  |  |  |  |
| East     | 17  | 19                       | 1.00            |  |  |  |  |
| North    | 26  | 19                       | 2.00            |  |  |  |  |
| West     | 27  | 19                       | 2.00            |  |  |  |  |

| Building Skin Schedule Comparison |                 |            |    |  |  |  |
|-----------------------------------|-----------------|------------|----|--|--|--|
| System                            | Duration (days) |            |    |  |  |  |
| Hand-Laid System 💦 🄇              | 7/29/2008       | 11/14/2008 | 79 |  |  |  |
| SlenderWall System 🔇              | 8/25/2008       | 10/29/2008 | 48 |  |  |  |
| Fotal Days Saved                  | (16)            |            |    |  |  |  |



- Project Overview
- Introduction of Analyses
- Analysis I Brick Façade
- Analysis II Roofing System
- Analysis III Transformer
- Final Conclusions
- Questions & Answers



Hand-Laid Brick Wall System:

- \$40.97/SF
- Includes:

- Utility brick
- Exterior sheathing
- Fluid applied vapor barrier
- Exterior studs
- Miscellaneous finishing
- Precast sills
- SlenderWall Precast System:
- \$40.00/SF

| System Cost Comparison |       |      |           |           |  |  |  |
|------------------------|-------|------|-----------|-----------|--|--|--|
| Wall System            | QTY   | Unit | Unit Cost | Cost      |  |  |  |
| Hand-laid Brick Wall   | 16404 | SF   | \$40.97   | \$672,043 |  |  |  |
| Precast SlenderWall    | 16404 | SF   | \$40.00   | \$656,160 |  |  |  |
| Cost Savings \$15,883  |       |      |           |           |  |  |  |

- Project Overview
- Introduction of Analyses
- Analysis I Brick Façade
- Analysis II Roofing System
- Analysis III Transformer
- Final Conclusions
- Questions & Answers

# **Quality Comparison**

Hand-Laid Brick Wall System:

Cavity wall system

- Proven quality in construction and appearance
- Mortar joints wear over time  $\rightarrow$  re-working required



# **Quality Comparison**

SlenderWall Precast System:

- Barrier wall system
- High Quality Architectural Class "A" Brick Veneer
- Mock-up
- 100% water-tight and acts as vapor barrier
- No leaking or wearing mortar joints
- <sup>3</sup>/<sub>4</sub>" joint between panels:
  - <sup>3</sup>/<sub>4</sub>" backer-rod
  - <sup>1</sup>/<sub>2</sub>" caulking layer
- Joints wear over time  $\rightarrow$  re-working required

- Project Overview
- Introduction of Analyses
- Analysis I Brick Façade
- Analysis II Roofing System
- Analysis III Transformer
- Final Conclusions
- Questions & Answers

# Conclusions

SlenderWall Precast System:

- Building Enclosure Schedule reduction  $\rightarrow$  16 days
- No Structural impact  $\rightarrow$  reduction possible
- Less staging & begins after superstructure
- $\rightarrow$  Reduced site congestion
- Cost savings  $\rightarrow$  \$15,883

- Project Overview
- Introduction of Analyses
- Analysis I Brick Façade
- Analysis II Roofing System
- Analysis III Transformer
- Final Conclusions
- Questions & Answers

### Analysis II – Roofing System

M.A.E. Requirements

Problem Statement:

- Inverted Roof Membrane Assembly (IRMA) & Green Roof installed was expensive
- Alternative systems → may offer similar LEED requirements & upfront cost savings

Goal:

- Similar quality & weatherproofing
- Cost-effective
- Meet LEED requirements and provide positive impact





- Project Overview
- Introduction of Analyses
- Analysis I Brick Façade
- Analysis II Roofing System
- Analysis III Transformer
- Final Conclusions
- Questions & Answers

### "Cool" Roof

#### Single-Ply Thermoplastic Polyolefin (TPO) Membrane:

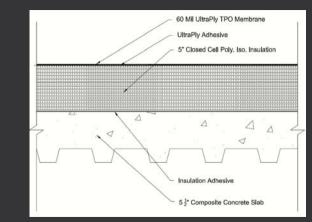
- Exterior Surface  $\rightarrow$  White reflective "cool" TPO membrane
- Fully adhered to closed-cell poly. iso. insulation
- Poly. Iso. Insulation  $\rightarrow$  R-6/inch
- Fully adhered to composite concrete slab

#### Replaces:

- 11,300 SF  $\rightarrow$  Ballasted IRMA Roofing
- 8,300 SF  $\rightarrow$  Extensive Green Roof over IRMA
- 19,600 SF → Hot Rubberized Asphalt Waterproofing membrane



- Project Overview
- Introduction of Analyses
- Analysis I Brick Façade
- Analysis II Roofing System
- Analysis III Transformer
- Final Conclusions
- Questions & Answers


### "Cool" Roof Design

Firestone Building Products:

- 60 Mil UltraPly TPO Membrane
- UltraPly Adhesive
- 5" Closed-cell Poly. Iso. Insulation (R-6/inch)
- Insulation Adhesive

Design:

- R-30  $\rightarrow$  5" of R-6/inch Insulation
- 10-ft rolls overlapped and heat-welded at seams for continuous waterproof layer



- Project Overview
- Introduction of Analyses
- Analysis I Brick Façade
- Analysis II Roofing System
- Analysis III Transformer
- Final Conclusions
- Questions & Answers

### Thermal Properties

Design Temperatures  $\rightarrow$  Richmond, VA:

- Summer: 75°F Indoor, 95°F Outdoor
- Winter: 70°F Indoor, 14°F Outdoor

| Heat Transfer Through Roof |                         |                         |            |  |  |  |
|----------------------------|-------------------------|-------------------------|------------|--|--|--|
|                            | TPO "Cool" Roof         | Average Green Roof      | Difference |  |  |  |
|                            | BTU/ft <sup>2</sup> *hr | BTU/ft <sup>2</sup> *hr | %          |  |  |  |
| Summer                     | 0.64                    | 0.40                    | 37%        |  |  |  |
| Winter                     | -1.78                   | -1.49                   | 16%        |  |  |  |
| TPO "Cool" Roof:           |                         |                         |            |  |  |  |

- 37% Increase in Summer Heat Gain
- 16% Increase in Winter Heat Losses

| TPO "Cool" Roof Thermal Properties       |                |                              |                           |                           |  |  |  |  |
|------------------------------------------|----------------|------------------------------|---------------------------|---------------------------|--|--|--|--|
|                                          | R-Value        |                              |                           |                           |  |  |  |  |
| R-Value per                              |                |                              |                           |                           |  |  |  |  |
| Material                                 | Thickness (in) | inch                         | R-Value                   | U-Value                   |  |  |  |  |
|                                          | L              | °F*ft <sup>2</sup> *h/Btu-in | °F*ft <sup>2</sup> *h/Btu | Btu/°F*ft <sup>2</sup> *h |  |  |  |  |
| Outside Air Film                         | -              | -                            | 0.17                      | 5.88                      |  |  |  |  |
| UltraPly TPO Membrane                    | 0.060          | 0.833                        | 0.050                     | 20.00                     |  |  |  |  |
| Poly. Iso Insulation                     | 5.000          | 6.000                        | 30.000                    | 0.03                      |  |  |  |  |
| Composite Deck                           | 5.500          | 0.100                        | 0.550                     | 1.82                      |  |  |  |  |
| Inside Air Film                          | -              | -                            | 0.610                     | 1.64                      |  |  |  |  |
| Total: (31.380) 0.032                    |                |                              |                           |                           |  |  |  |  |
|                                          | Heat Transfer  |                              |                           |                           |  |  |  |  |
| S                                        | ummer (75°F In | door , 95°F Outdo            | oor)                      |                           |  |  |  |  |
| ΣR                                       |                | ΔΤ                           | Α                         | Q                         |  |  |  |  |
| °F*ft <sup>2</sup> *h/Bt                 | °F             | ft^2                         | Btu/hr                    |                           |  |  |  |  |
| 31.380                                   | 20             | 19,600                       | 12,492                    |                           |  |  |  |  |
| Winter (70°F Indoor , 14°F Outdoor)      |                |                              |                           |                           |  |  |  |  |
| ∑R                                       | ΔΤ             | Α                            | Q                         |                           |  |  |  |  |
| °F*ft <sup>2</sup> *h/Btu °F ft^2 Btu/hr |                |                              |                           |                           |  |  |  |  |
| °F*ft <sup>2</sup> *h/Bt                 | u              | °F                           | ft^2                      | Btu/hr                    |  |  |  |  |

- Project Overview
- Introduction of Analyses
- Analysis I Brick Façade
- Analysis II Roofing System
- Analysis III Transformer
- Final Conclusions
- Questions & Answers

### LEED Comparison

LEED 2009 for New Construction:

Single-Ply TPO "Cool" Roof:

- Reduces Heat Island Effect
- Optimizes Energy Performance
- Green Roof System:
- Reduces Heat Island Effect
- Optimizes Energy Performance
- Stormwater Management and Water Runoff
- Water Efficient Landscaping
- Improves environment  $\rightarrow$  create educational laboratory

|               | LEED Credit Cor                                                           | nparison         |    |                            |      |        |        |               |
|---------------|---------------------------------------------------------------------------|------------------|----|----------------------------|------|--------|--------|---------------|
| LEED 2009 fo  | r New Construction and Major Renovations                                  |                  | "0 | ile-Ph<br>ool" F<br>Syster | toof |        |        | Green<br>stem |
| Sustainable   | Sites                                                                     | Possible Points: | Y  | N                          | ?    | Y      | N      | ?             |
|               | Stormwater Design - Quantity & Quality Contr<br>Heat Island Effect - Roof | ol 1 to 2<br>1   | V  | 4                          |      | ¥<br>V |        |               |
| Water Efficie | ency                                                                      |                  |    |                            |      |        |        |               |
| Credit 1      | Water Efficient Landscaping                                               | 1 to 4           | 8  | ۷                          |      | ۷      |        |               |
| Energy and A  | Atmosphere                                                                |                  |    |                            |      |        |        |               |
| Credit 1      | Optimize Energy Performance                                               | 1 to 19          | V  |                            |      | ۷      |        |               |
| Innovation a  | nd Design Process                                                         |                  |    |                            |      |        |        |               |
| Credit 1.1    | Innovation in Design - Educational Laboratory                             | 1                |    | N                          |      | V      |        |               |
|               | Estimated Po                                                              | ssible Credits:  |    | 2 to 1                     | 5    | -      | 6 to 1 | 16            |

LEED Comparison Outcome:

• Green Roof  $\rightarrow$  4 to 10 additional LEED credits

- Project Overview
- Introduction of Analyses
- Analysis I Brick Façade
- Analysis II Roofing System
- Analysis III Transformer
- Final Conclusions
- Questions & Answers

### Schedule

IRMA & Green Roofing System:

- 23 Days  $\rightarrow$  IRMA & Ballasts
- 10 Days  $\rightarrow$  Green Roof plantings
- Multiple Mobilizations

- Large delivery, storage & staging area
- Single-Ply TPO "cool" Roofing System:
- 23 Days  $\rightarrow$  entire system
- Single Mobilization
- Less materials  $\rightarrow$  delivered to & stored on roof
- Saves 10 days

- Project Overview
- Introduction of Analyses
- Analysis I Brick Façade
- Analysis II Roofing System
- Analysis III Transformer
- Final Conclusions
- Questions & Answers

### Schedule

IRMA & Green Roofing System:

- 23 Days  $\rightarrow$  IRMA & Ballasts
- 10 Days  $\rightarrow$  Green Roof plantings
- Multiple Mobilizations

- Large delivery, storage & staging area
- Single-Ply TPO "cool" Roofing System:
- 23 Days  $\rightarrow$  entire system
- Single Mobilization
- Less materials  $\rightarrow$  delivered to & stored on roof
- Saves 10 days



IRMA & Green Roofing System:

- Green Roof \$23.00/SF 8,300 SF
- IRMA System \$12.00/SF 19,600 SF

Single-Ply TPO "cool" Roofing System:

- \$8.00/SF
- Upfront Savings  $\rightarrow$  \$269,300

| System Cost Comparison |       |      |           |           |  |  |  |
|------------------------|-------|------|-----------|-----------|--|--|--|
| Wall System            | QTY   | Unit | Unit Cost | Cost      |  |  |  |
| Green Roof & IRMA      | 19600 | SF   | \$8.95    | \$426,100 |  |  |  |
| Single-Ply TPO         | 19600 | SF   | \$8.00    | \$156,800 |  |  |  |
| Cost Savings \$269,300 |       |      |           |           |  |  |  |
|                        |       |      |           |           |  |  |  |

- Project Overview
- Introduction of Analyses
- Analysis I Brick Façade
- Analysis II Roofing System
- Analysis III Transformer
- Final Conclusions
- Questions & Answers

## Conclusions

Single-Ply TPO "Cool" Roof System:

- Reduces site congestion, staging, and storage space
- Saves 10 days
- Upfront cost savings  $\rightarrow$  \$269,300
- 4 to 10 Fewer potential LEED credits
- Increases heat transfer  $\rightarrow$  reduces Energy Efficiency

- Project Overview
- Introduction of Analyses
- Analysis I Brick Façade
- Analysis II Roofing System
- Analysis III Transformer
- Final Conclusions
- Questions & Answers

### **Analysis III – Transformer**

*Electrical Breadth* Problem Statement:

- Building Transformer provided  $\rightarrow$  undersized
- Suffered phase loss & damaged contacts for variable-frequency drives (VFD's) days before start of classes
- Costs incurred  $\rightarrow$  overtime labor & materials
- Proper coordination can reduce risk of component failures Goal:
- Research into sizing building transformers
- Perform Electrical Calculations  $\rightarrow$  size transformer
- Provide best practices for design, install & maintenance



- Project Overview
- Introduction of Analyses
- Analysis I Brick Façade
- Analysis II Roofing System
- Analysis III Transformer
- Final Conclusions
- Questions & Answers

## **Sizing Procedures**

- Determine:
  - Expected Building Electrical Load
  - Voltage Required by Load
  - 1-Phase or 3-Phase?
- Determine Supply Amps
- Frequency of supply and electrical load  $\rightarrow$  must be the same
- Calculate kVA rating
- Select transformer → standard capacity equal or great than that needed to operate building loads

- Project Overview
- Introduction of Analyses
- Analysis I Brick Façade
- Analysis II Roofing System
- Analysis III Transformer
- Final Conclusions
- Questions & Answers

### Sizing Procedures

- Determine:
  - Expected Building Electrical Load
  - Voltage Required by Load
  - 1-Phase or 3-Phase?
- Determine Supply Amps
- Frequency of supply and electrical load  $\rightarrow$  must be the same
- Calculate kVA rating
- Select transformer → standard capacity equal or great than that needed to operate building loads

### **Electrical Calculations**

Sizing Distribution Transformer:

Expected Electrical Load = 968.2 kW

Voltage required by Load = 480 V Phase: 3-Phase

Current of Expected Load = 1165 A

kVA of 3-Phase Transformer Required: kVA= $\sqrt{3}$  \* 1165 A \* 480 V = 968.6 kVA  $\rightarrow$  Use 1000 kVA

Result: (1

1000 kVA, 3-Phase Distribution Transformer

- Project Overview
- Introduction of Analyses
- Analysis I Brick Façade
- Analysis II Roofing System
- Analysis III Transformer
- Final Conclusions
- Questions & Answers

### Conclusions

- Building Distribution Transformer:
- Close coordination & quality control
- Calculations → 1000 kVA rated 3-Phase Transformer
  Differs from 750 kVA transformer
  - Size reduction factors made by the Utility Company
- Adopt Best Practices for Design, Installation, and Maintenance →
  - minimize component failures & loss of rating efficiency

- Project Overview
- Introduction of Analyses
- Analysis I Brick Façade
- Analysis II Roofing System
- Analysis III Transformer
- Final Conclusions
- Questions & Answers

### **Final Conclusions**

SlenderWall Precast Panels:

- 16 day reduction
- Reduces site congestion & staging area
- Saves \$15,883

### Single-Ply TPO "Cool" Roof :

- 10 day reduction
- Reduces delivery, storage & staging area
- Saves \$269,300 → Upfront costs
- Lost Energy Efficiency → increased summer heat gains and winter heat losses
- 4 to 10 Fewer Potential LEED Credits

#### **Building Distribution Transformer:**

- Coordination & quality control required during design
- Calculations  $\rightarrow$  1000 kVA rated 3-Phase Transformer
- Adopt Best Practices for Design, Installation, and Maintenance
  - Optimizes lifetime & performance



- Project Overview
- Introduction of Analyses
- Analysis I Brick Façade
- Analysis II Roofing System
- Analysis III Transformer
- Final Conclusions
- Questions & Answers



### Acknowledgements

John Tyler Community College: Leigh LaClair William Taylor Gilbane Building Company: Drew Micco Nick Ivey Brett Thompson

Burt Hill: Damon Sheppard Capital Masonry: Wayne Young International Roofing: Gary Morrison CM Thesis Consultant: Jim Faust ISEC, Inc. Matthew Hiestand

Jason Hunter

Penn State AE Faculty & Colleagues

Family and Friends

### **QUESTIONS**?